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INTRODUCTION

In spite of the differences in culture, language, and age,
there is probably a sight familiar to all, at least in Asia, |8

Europe, and North America.  Surprisingly, this sight is 7 316 ol 12

of a mathematical object, a discipline that many claim to 5 7

hate.  It’s a simple game played alone on a 9 by 9 457
grid, which can be drawn in a matter of seconds on a 1 3
piece of paper. Though seemingly useless, it has experi- 1 6/8
enced one of the greatest expansions since the invention of 5 815 7 1

Chess thousands of years ago. By now, the astute reader

should have easily guessed what I'm talking about: The Su-  Figure 1.1: a Sudoku grid

doku.
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Suraromu

It is simple enough that the rules can be explained to a kid, and
that most of us can remember them perfectly. Yet it is difficult enough
that we have not proven some simple facts about it.! In fact, Sudoku
is NP-complete when generalized to a n by n grid [2].

There are hundreds upon hundreds of similar problems
[3]1[4](5]- Ranging from the simpler ones like Sudoku X to
more esoteric ones like the Suraromu. In this work we
will call them Logic Puzzle, and we will restraint ourself to
perfect information, single-player games without planification
(i.e: the moves to solve the puzzles can be played in what-
ever order, as opposed for example to the Tower of Hanoi’
game).

For example we don’t know yet the maximum number of clues for a minimal Sudoku (i.e. a Sudoku such that
removing any of the clues dissipates the uniqueness of the solution) [1].

The tower of Hanoi is a game involving three pegs and a set of disk of different size. You have to move all the
disk to a different peg, but you can only move one disk at a time and a disk can never be placed on top of a

smaller disk [6].




2 1 INTRODUCTION

1 Whereas creating a program to solve one specific logic puzzle such as Sudoku may be
quite straightforward, it may not be a good idea to solve all of them in that fashion. Here

are a few reasons why:

« It would be a time consuming process. There exist hundreds of logic puzzles. Writing
a new program each time we want to solve one of them would be wildly inefficient.
Many such puzzles incorporates similar elements and rules [7] and solving all of
them from scratch would require to implement multiple times the same type of
resolution process.

« Even if we solved all those problems, it would be in vain since it’s relatively easy
to create new similar games by inventing new rules from scratch. For example the
YouTube channel "Cracking the cryptic" regularly introduces new game mechanics
that are not present in the corpus we worked on [8] [9]. Moreover the existing rules
can be easily combined to form new games. For example we can combine the rules
of the Nonogram with a new rule ensuring that some regions contains a specific
number of black cells (similar to what can be found in the Killer Sudoku) to create a
completely new puzzle.

It would be of a lesser interest for game designers, which need to be able to test a game
without learning to code. Traditional actors of logic games, such as Nikoli®, don’t
use computer generation because the problems created don’t have the same "feeling"
and are less enjoyable because they don’t take into account the solver’s possible
reasoning. This results in problems where the difficulty is incorrectly distributed,
with one or a few very hard first steps, and then a simple solution [10].

However, in the case of Nikoli, most of their content is proposed by their reader [11].
It would be useful for this audience to validate their design without having to learn
a programming language to model and solve it, regardless of whether they create a
problem for an existing game or invent an entirely new game.

To try and offer a better solution to this type of problems, the present work proposes
to use the Ludii general game playing system [12] to create a general game playing agent
capable of designing and solving (almost) all logic puzzles. A general gaming system is
a system allowing to model and play many different games, in this case via a ludemic
human-like [13] representation of its rule. The aim of this agent is to use the techniques of
constraint programming [14], a paradigm well suited for solving combinatorial problems,
by transforming this human-like representation to an XCSP [15] instance. Then, to use a
constraint programming solver to produce a solution to the problem and input it in Ludii.

In this thesis we will delve more in the details of this agent, and the choices that were
made during its conception, such as the solver utilized on the instance or the internal im-
plementation of the constraints. Moreover we will evaluate the performances of our solver,
both in term of number of solved problems and in term of resolution speed (Depending
on the size of the instance). The main issues we faced were that some constraints used

3Nikoli is a Japanese publisher who specialize in logic puzzle that became prominent worldwide with the popularity
of the Sudoku, their site can be found at: https://www.nikoli.co.jp/en/



frequently in the puzzles don’t translate easily to constraint in constraint programming.
This was challenging for pattern-based games like Nonograms, but we managed to solve
them. However, we were unable to solve games that involve graph theory, especially those
with connectivity constraints, such as SlitherLink.

Figure 1.2:
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Sample Progressing Solution

SlitherLink, a game in which hints indicate the number of neighboring edges that have to be colored,
but all colored edges have to be connected.

The following chapters are organized as follows. Chapter 2 discuss in greater depth the
Ludii framework, constraint programming, and the foundational works upon which this
thesis is based. Chapter 3 details the implementation process and explains the selection of
specific constraint programming solvers. Chapter 4 presents the performance results of the
agent in terms of number of problems solved, speed and generalization. Finally, Chapters 5
and 6 offer perspectives for future work and present the main conclusions of this thesis.







2

BACKGROUND AND PREVIOUS
WORKS

I N this section we will describe the tools used in this thesis, the Ludii framework, the
constraint programming paradigm and the XCSP formalism. Moreover, we will briefly
analyze the previous works realized on this subject.

2.1 GENERAL GAME PLAYING AND LuDII

2.1.1 GENERAL GAME PLAYING

Most of the early research on artificial intelligence focused on specific games such as
Chess or Drought. However, this endeavor has limited value in AI [16]. General Game
Playing (GGP) is the study and construction of agents which are not limited to a single
game, but can play effectively any game given a correct representation of their rules. A
General Game Playing system is the framework or environment designed for the creation
and execution of general game players (Al agents). There are many such systems and
it’s important to carefully study them in order to select the appropriate one for our use case.

2.1.2 GAME DESCRIPTION LANGUAGE

One of the tools that allowed the recent evolutions of GGP was the introduction of GDL [17]
(Game Description Language), a programming language created for the express purpose of
describing rules of games. It was designed by a team at Stanford University in 2006 in order
to cover finite, discrete, deterministic multi-player games of complete information. It uses
the syntax and logic of first-order logic programming, it’s built upon Datalog, a variant of
Prolog, which is a logic programming language that uses facts, rules, and queries.

Since then it has been one of the main focus in the research on General Game Playing.
Notably by being the language used by the International General Game Playing Com-
petition [18] hosted on GameMaster [19] until 2016. Interestingly, the last International
General Game Playing competition was won by WoodStock [20], which is a solver based
on stochastic constraint programming, as described in [21].
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Later, GDL has also been extended to include imperfect-information games [22] and epis-
temic games [23]. Finally the use of Propositional Networks [24] has allowed the speed of
the reasoning process to improve by several orders of magnitude compared to custom-made
or Prolog-based GDL reasoners.

However GDL has some severe limitation [12]. Key aspects of games must be defined from
scratch every time we want to use them. Implementing new games is time consuming and
require a solid background on first order logic and computer sciences, as a consequence
the library of games available in GDL has only grown with a handful of new games every
year. The description doesn’t encapsulate key game elements that human think about
when describing games, and existing games need a lot of change to apply a small change
of rules (for example when changing the size of the board). The processing speed remains
a limiting factor of many applications as it requires logic resolution.

2.1.3 RBG

More recently RGB was developed as an alternative to GDL to allow the modelisation
of more complex games with large branching factor [25]. It aims to compensate certain
drawbacks of pre-existing languages. It is based on an idea developed in [26] to represent a
subset of games with regular languages (i.e: A regular language being a language that can
be recognized by an automaton). However as the expressions utilized are simplistic and
only applied to one piece at a time, this representation are limited and cannot represent non
standard comportment. RBG expands on this idea to describe the full range of deterministic
board games.

RBG is composed of two languages, one low level to allow the efficient computation by
the compiler and one high level to allow a higher readability. This allows it to mostly
outperform other general game playing framework [27] in term of efficiency. The way
this is evaluated is by measuring the number of flat Monte Carlo playouts by seconds. (i.e:
The number of games per second we can finish while playing randomly). It can describe
every finite deterministic game with perfect information, but not game with incomplete
information, which is thankfully not a problem when considering deduction puzzles.

2.1.4 Lupx

Ludii is a general game playing system aiming to model, play and design a large variety of
games, such as board games or logic puzzles [12]. It contains more than a thousand different
playable games. Current efforts focus on finding an efficient GGP model for games with
imperfect information, such as card games [28]. Furthemore the Ludii language has been
shown to be universal [29], it can represent any table game, including non-deterministic
and imperfect-information ones.

It is being developed as part of the Digital Ludeme Project [30] which aims to improve our
understanding of traditional games using modern Al techniques, to study their historical
development and the spread of ludic ideas. Good examples of such an utilization of artificial
intelligence to study historic games can be found in [31] and in [32] where it is used to
evaluate key metrics about a specific set of rules in order to shed light on potential rules
differences or properties of the games.

The Digital Ludeme Project is carried out by the GameTable COST Action network, an
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international network of scholars to inspire methodologies and applications on how to use
game Al to study, reconstruct, and preserve the cultural heritage of games [33][34].

It utilizes an approach based on ludeme [35], a term widely used in the research com-
munity surrounding games including Al, to describe an unit of game-related information.
Characteristics of ludemes as defined by [35] are:

« They are discrete: They are understandable as a single discrete unit of information,
even if they can encapsulate other concept. (For example the move of a knight is a
single ludeme, even if it encapsulates other concepts).

« They are transferable: They can be transferred from one game to another without
loosing their meaning.

« They are contrastive: Changing a ludeme in a game should change the game itself, for
example on a square grid we can define the move of a knight either as "An “L” walk
(forwards, forwards, left/right, forwards) in any of the four orthogonal directions" or
"Closest non-adjacent cell of a different color". Since these two definitions produce
strictly the same result, they are not two distinct ludemes.

« They are compound: A ludeme can be composed of multiple contrastive sub-elements
that are also ludemes. It is obvious when comparing rules like "Hop over any adjacent
piece" and "Hop over any adjacent piece to flip it"

It was with this definition of a ludeme in mind that was developed the Ludemic model of
games, a computational method for describing games by their elements. It was created as
part of the Ludi software system then improved for Ludii [12]. In this model, game are
composed of three types of elements:

« Class name: Denoted by bracketed lowercase keywords (players _), they corresponds
to a Java Class in Ludii’s code base.

« Attributes: Denoted by uppercase letters (Line), they describe a single constant value.

« Variables: Denoted by numbers, strings or booleans ("Disc" or 3), they represent a
single user-set value.

This model is based on a grammar automatically generated from the Java class in the Ludii
code base using a class grammar approach [36]. A class grammar as introduced in [36] is a
formal grammar derived directly from the class hierarchy of the underlying source code,
java in this case. It aims to facilitate game design by providing a simple interface to the full
functionality while hiding the implementation details.

Formally, the grammar is an Extended Backus-Naur Form style grammar consisting of a
set of production rules, each corresponding to exactly one java class. The full grammar can
be found in [37] and details on how this grammar is used to generate game representations
and the model necessary to play them can be found in [13]. As an example to study the
ludemic model and Ludii’s syntax we can examine the implementation of Tic-Tac-Toe in
Ludii:
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(game "Tic-Tac-Toe"
(players 2)
(equipment { (board (square 3)) (piece "Disc" P1) (piece "Cross" P2) })
(rules
(play (move Add (to (sites Empty))))
(end (if (is Line 3) (result Mover Win)))

)

We can see that a Ludii game is composed of a 3-tuple of ludemes: <Players, equipment,
Rules>:

« Players: This element defines the participants and the game’s control flow. In this
case players play Alternatively, but they could play simultaneously for games like
Rock-Paper-Scissors. For all logical puzzles as described in [7] there is always only
one player.

« Equipment: This includes a list of containers and a list of components. Containers
represent the game’s layout as graphs, where playable sites are vertices, faces and/or
edges. They define the geometry of the board. In the previous example, the board is
a 3 by 3 square, but any board that can described as a combination of vertices, edges
and/or cells can be defined [38].

Components are the pieces, cards, tiles or dice that can be placed on the sites of the
containers. In this case the components are the pieces "Disc" and "Cross" which are
not present at the start of the game.

« Rules: The rules consist of a 3-tuple <Start, Play, End>:

— Start denotes a list of actions that executes before the start of the game. For
logic puzzles it is mainly used to apply a different Challenge to the game, i.e.,
the initial size of the board and position of the hints specific to this instance of
the puzzle.

- Play allow to calculate the set of all possible actions given a particular state.
We only want the player to be able to play moves that are allowed by the rules
of the game. To do so we generate a list of possible moves and check that he
chooses one of them, in the aforementioned game a player can drop a piece on
any empty site. It is in this ludeme that we will define the different constraint
that the puzzle will have to respect.

- End denotes a set of condition under which a given state is terminal, each
condition leading to a score vector to evaluate the outcome of the game. For
the Tic-Tac-Toe it is straightforward and simply state that if a line of 3 pieces is
formed, the current player wins. Most of the time the end condition for puzzles
games will be that every variable is attributed and every constraint is satisfied,
which is conveniently described by the ludeme (is Solved). The outcome of the
game is then invariably that the only player wins.
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Figure 2.1: Some examples of games in Ludii

Ludii has some clear advantages over other General Game Playing systems [39][12]:

« Clarity/Simplicity: Code is self-explanatory even for non-programmer, easier to
create and modify.

« Generality: Ludii can theoretically support any game that can be programmed in
java (which is any game). While GDL and RBG are restricted to deterministic perfect
information games. This can be a severe limitation as it excludes most card games
and games necessitating dice.

« Extensibility: The structure of Ludii make it very easy to add new ludemes as we
just have to add a class to the ludeme library.

« Evolvability: GDL uses complex chains of logical operations that don’t allow the use
of genetics algorithms to create new games. With Ludii, this can be done and has
been done [40].

« Cultural applications: Ludii is linked to a server and database that stores relevant
cultural and archaeological information about the game [41].

- Efficiency: Efficiency is not a core aspect of Ludii, we sometimes prefer to favor clarity
and evolvability. Whatsoever, Ludii still outperforms RGB interpreter and GDL. The
RBG compiler still outperforms Ludii but most of the time their performances are of
the same order of magnitude.

« Existence of previous works: A preliminary work [42] already exists that implements
some core games and concepts of logic puzzles in the Ludii framework.

From this comparison of the most commonly used General Game Playing languages
and frameworks, Ludii emerges as the most suitable for our application. While it lacks the
extensive literature of GDL and may not always match the speed of RBG, these shortcomings
do not appear to be critical for our purposes. Moreover, Ludii offers clear advantages in
terms of extensibility and simplicity, which will be essential for implementing the new
features [43].
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2.1.5 MODEL AND PLAY LOGIC PUZZLES WITHIN LuDII

In this master thesis [44], Pierre Accou was tasked to extend the library of logic problems
in Ludii. To do so he uses [7] to define rigorously what is a deduction puzzle. It is worth
noting that some of the terms used in this paper are also utilized as general game concept

in Ludii [45]. He then proceeds to distinguish deduction puzzles and planning puzzles, the
latter requiring a strategy to anticipate the moves needed to solve the puzzles, the order of
the movements being a key part of the solution. In a deduction puzzle, the movements can
be played in any order. Deduction puzzle can be further divided in three categories:

« Path Puzzles: Puzzles that require a path, connections or arrows between elements.

xoxz| xix 3] 4

X X j— X — —

] I

ARt 3

Grox | | [3xo0x

Sk 2]

=1 -

I N B

2l 3] xox2]_| 1
(a) SlitherLink (b) Hashiwokakero

Figure 2.2: Path puzzles

« Position Puzzles: Puzzles that requires some numbers, letters or symbols to be placed
at specific positions.

St 9 |
7 s 2 ol _H N
5 7 o H
457 [ | [ |
1 3 . Q
e goEe
0 a He Ne
(a) Sudoku (b) Akari

Figure 2.3: Figure puzzles

« Shading Puzzles: Puzzle where the player has to color certain elements to find the
solution.
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Figure 2.4: Shading puzzles

In this thesis, the author attempts to implement all the games from Nikoli! and Cross+A?
to expand Ludii’s catalog, aiming to cover as many puzzle types as possible. In doing so, a
comprehensive test set is incidentally created, which can be used for the development of a
general game-playing agent for these types of puzzles.

Some of these games were already implemented in Ludii, while others were easily added
using the existing code base. However, the addition of new ludemes and modifications
to existing ones were necessary to accommodate the new games. The following sections
present a selection of both old and new games relevant to this work, along with the old
and new ludemes used to describe them.

2.1.6 GAMES OF NOTE

As of the writing of this thesis, the version of Ludii produced by Pierre Accou incorporates
more than 40 different logic puzzle. Describing them all here would be of little interest.
Similarly their rules can be complex, we will thus focus on game of particular interest on
the context of this thesis and only develop the aspect of their rules that differ from other
similar games.

SUDOKU AND ITS VARIANTS

One of the main category of deductive puzzles in Ludii are variants of Sudoku. They have
various shapes and sizes, but mostly they can be describe as a set of region on the board
where each of the location has to contain a distinct value. You can see below a selection of
variants of Sudoku:

https://www.nikoli.co.jp/en/puzzles/
Zhttps://www.cross-plus-a.com/fr/index.htm
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Figure 2.5: Variants of Sudoku

KAKURO, MAGIC SQUARE AND ASSIMILATED

In Kakuro, there is a constraint on region that state the sum of the
elements of a region must equal a specific value given as an hint at the
start of the game. This rule is frequent in logic puzzle and is notably

used in Magic Square and Killer Sudoku.

NONOGRAM AND ITS VARIANT

Figure 2.6: A Kakuro
Grid

For games like Nonogram each row and column of the grid is associated
with a set of numbers that indicate the lengths of consecutive blocks of
filled cells in that row or column. For example, a clue of "3 1" for a row
means there is a block of 3 filled cells followed by at least one empty
cell, and then a block of 1 filled cell. Variant include different shapes

of Nonogram (Like the Hexagonal Nonogram)
(Where clues have different colors).

and color Nonogram
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Figure 2.7: A color Nonogram and its solution

PROBLEMS COUNTING THE NUMBER OF ELEMENTS IN A REGION

The main constraint in this large array of puzzles is that the number of a specific element
in a specific region must be equal to a particular value. This can be straightforward, for
example in Fill A Pix each number indicates the number of neighboring cells that are
shaded. On the contrary it can be quite complex, for example in Buraitoraito, the hint in a
cell indicates the number of stars in a region including all the cells orthogonal to the hint
and bounded by other hints. Moreover sometimes the region is not statically defined, in
Kurodoko for instance, the region used to evaluate the hint is bounded by the moves of the
player.

O @@ «H W | ~H *x 3
0 0 0® * *x H =

o @ *ExE  *FH * H:

° ° 2 1 ExE~E B s |
2 2 0@ *x BEx «

@O0 : 00 *+ H*x *x HEx*xx*

®0« 0E0EE B B BxE 8 [ | 5 [ |

|

~ |l

©EE0000E *Exx FExE* , B
s 0 s O KR Blx * *

o @O=0r o * % B B > 5
(a) Fill-A-Pix (b) Buraitoraito (c) Kurodoko

SLITHERLINK, BiG TOUR, MAsYyU, HASHIWOKAKERO

These puzzles are path-based problems, played on the edges of a graph. To solve them, the
player must toggle specific edges to create a graph that meets certain conditions. Common
constraints include requirements for the graph to form a single loop, to remain connected,
for each cell to have a specific number of edges around it, and to prevent edges from
crossing.
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Figure 2.8: In SlitherLink the hint on cells indicates the number of toggled edges around it

2.1.7 LUDEMES OF NOTE

In this section we will present the most frequently used ludemes in the implementation
of puzzle present in Ludii. We will also present some ludemes that are only used in one
specific puzzle, which sometimes happens when a rule is too specific to be covered by
existing ludemes.

IsSum/ATMOST/ATLEAST

These three ludemes are applied on a region of the board. They compute the sum of the
elements on this region, then they assure that this sum is equal/smaller/larger then another
element that can be an integer or a function.

IsCounT
This ludeme counts the number of specific element in a region, then it checks that it is
equal to another element that can be an integer or a function.

IsMATCH

This ludeme is primarly used to describe the Nonogram. It is applied on a list of cell and
ensure that the values in these cells respect the pattern given in the ludeme. It is a direct
implementation of the rule of the Nonogram described earlier.

IsConNEX
This ludeme compute the number of components in a graph, and ensures that it doesn’t
exceed the authorized number.

IsCROSSED
This ludeme is only utilised in the game Hashiwokakero, it checks that two vertices that
cross each other can’t be selected at the same time.

IsTILESCOMPLETE
This ludeme checks that in a region either all the cells are attributed, or none are.
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IsDisTINCT
This ludeme is used with a region and an integer, it checks that this integer is unique on
this region.

ALLHINTDIFFERENT
This ludeme is only utilized in Hitori, which contains the unique rule that the player has to
hide numbers written on the grid so that each number in columns and grids are different.

2.1.8 LubEMPLEX

LudemPlexes are shortcut for rules that are frequent in different games or puzzle in Ludii
in order to facilitate the readability of the ludemic representation. In his Master’s Thesis,
Pierre Accou implemented a few of these LudemPlexes:

« "OnlyOneWay": This ludemplex used in graph problems checks that the puzzle is
solved and that there is only one group of edges, i.e., the graph composed of these
edges is connected.

+ "NumberOfEdgeByVertex": In graph problems, this ludemplex ensures that the
number of edges connected to a specific vertice is equal to 0 or 2. In practice, this
imposes that the graph will form loops as imposed in Masyu, Slitherlink or BigTour.

« "PieceNotAdjacent:" This ludemplex ensure that two pieces cannot be placed
adjacently in Hitori and Kurodoko.

2.2 SOLVING LOGICAL PUZZLES

2.2.1 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) [46] is a heuristic search algorithm used for decision-
making processes in game playing, it has been proven as very effective for playing games
with very large branching factor such as Go, in fact MCTS was part of the algorithm used by
the first artificial intelligence to beat the best human player [47]. It combines the principles
of random sampling and tree search to find the most promising moves. It constructs a
tree where each node represent a game state, select randomly a node from this tree, then
simulate a lot of games starting from this node by playing randomly. It then update the
statistics of the node for example with the number of victories/defeats. Once this process
has been repeated enough times, the algorithm has a good statistical representation of
the most promising moves and it can choose the most promising one. Some variation of
this algorithm, such as UCT [48] offers informed way to choose the branches that further
improve the efficiency the MCTS agents.

MCTS tends to perform well in General Game Playing because it does not require any
game-specific knowledge such as heuristic evaluation function for the assessment of posi-
tion, it simply needs to be able to simulate many games in short succession. Furthermore
it can be parallelized with great efficiency. We can argue that Monte-Carlo Tree Search has
been the most important technique introduced in GGP [49]. In the context of Ludii MCTS
was one of the principal Al approaches that allowed the study of games in the Digital
Ludeme Project [50][51].

Given these earlier success, it is natural to try to implement similar techniques to extend
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them to single-player games. That’s exactly what was done by [52] and [53]. They explore
the use of Nested-Monte Carlo Tree Search in the resolution of logic puzzle. Nested-MCTS
is a variant of MCTS allowing MCTS instances to run within each node of the main search
tree. They show very robust results, particularly on planification problems. However they
do not tend to perform very well en deduction puzzle, for example [52] performs badly
when applied to the simple 9x9 Sudoku. [53] uses a constraint programming approach,
but then uses MCTS as an heuristic for searching a solution (With the the number of
variables that have been assigned before finding a variable with an empty domain before
backtracking as a score). This result is really promising and we will compare it to the
solution provided by more generic solvers.

2.2.2 CONSTRAINT PROGRAMMING

Constraint programming is a paradigm of programming for solving combinatorial problems
where the solution must satisfy a set of constraints or conditions [54] [14]. The general
idea is that the user states the constraints and a general purpose solver is used to solve
them.

A problem in Constraint Programming is composed of:

« Variables: The elements we have to determine to solve the problem, in this case
typically representing a value the player has to choose for a specific location. For
example in Sudoku, there would be a variable for each blank case at the start of the
game.

« Domains of Value: For each variable, the range of values that it can takes. In the case
of the classical Sudoku, it would be the integers from one to nine.

« Constraints: A set of relations between subsets of the variables, such as a relation
specifying that each variable in a specific line of a Sudoku must be different.

Conceptually, when a solver is called in a Constraint Programming problem, it assigns a
value to a variable from its domain, then propagates the constraints involving that variable.
Propagation adjusts the domains of other variables connected by constraints, reducing
possible values based on the change. If a variable’s domain is altered due to propagation,
the solver propagates the related constraints as well [14]. At the end of this process, three
outcomes are possible:

« The problem is solved, so the solver stops and returns one of the solutions.

« A contradiction occurs (a variable’s domain becomes empty, meaning no valid value
exists), and the solver excludes the initial value assigned to the first variable, this is
called Backtracking.

« No contradiction is encountered but the problem is not solved, so we repeat the
process with another variable.

A Constraint Programming (CP) solver systematically explores the solution space. This
guarantees that if a solution exists, it will eventually be found. Conversely, if no solution
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exists, the solver can rigorously prove it. Additionally, when a solution is identified, the
method used to find it is fully traceable, offering high explainability.

Problems that are well-suited for Constraint Programming (CP) generally share several
characteristics that make them ideal for this approach. They are combinatorial problems,
with discrete domains and well defined constraints where finding any feasible solution
is more important than an optimal one (Even though there are other paradigms for Con-
straint Optimization Problems). Logic puzzles have all those characteristics and are perfect
candidates for Constraint Programming.

Moreover many such problems have been proven to be NP-complete [55], and Constraint
Programming performs well on this class of problems [56][57].

All in all, it seems that Constraint Programming is a good tool for solving logic puzzle, and
a great part of recent researches uses it when solving them [56] [57] [58] [42] .

2.2.3 XCSP

To allow for a common representation of constraint programming problems, a standard
format was proposed in [59] and has been since extended to XCSP3 [15]. It employs
the Extensible Markup Language (XML), which is a widely used flexible text format. It
is commonly employed, and is a a fundamental element of HTML, which should make
the XCSP3 format easy to understand for people who any person who has a background
in information technology. You can see in the following text an example of the XCSP3
representation of a simple 4 by 4 Sudoku:

<instance format="XCSP3" type="CSP">
<variables>
<array id="x" note="x[1i] is the cell i" size="[16]"> 1..4 </array>
</variables>
<constraints>
<intension> eq(x[0],3) </intension>
<intension> eq(x[2],2) </intension>
<intension> eq(x[7],1) </intension>
<intension> eq(x[10],1) </intension>
<intension> eq(x[14],3) </intension>

<allDifferent> x[0] x[4] x[8] x[12] </allDifferent>
<allDifferent> x[1] x[5] x[9] x[13]</allDifferent>
<allDifferent> x[2] x[6] x[10] x[14]</allDifferent>
<allDifferent> x[3] x[7] x[11] x[15]</allDifferent>

<allDifferent> x[0..3] </allDifferent>
<allDifferent> x[4..7] </allDifferent>
<allDifferent> x[8..11] </allDifferent>
<allDifferent> x[12..15] </allDifferent>

<allDifferent> x[0..1] x[4..5] </allDifferent>
<allDifferent> x[2..3] x[6..7] </allDifferent>
<allDifferent> x[8..9] x[12..13] </allDifferent>
<allDifferent> x[10..11] x[14..15] </allDifferent>
</constraints>
</instance>

XCSP3 has many interesting properties [15], it is well documented and easy to under-
stand, it is flexible and support a large range of constraints and frameworks. In fact, it
should be able to model practically all constraints that can be found in major constraints
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solvers [60].

Furthermore a large ecosystem exists around XCSP3, with parsers written in Java

and C++, as well as a python library and a java API for modeling constrained problem.
Many series of instance are available and a competition of constraint programming is
held annually using this format [61], competition to which most of the modern solvers
participate, ensuring they remain XCSP3 compatible.
In order to compare performances of different solvers in the instances produced by our
solver, we need a way to offer a common representation of the problems that the solvers
can process. XCSP3 comes as a natural choice given the place of standard it occupies in
the field of constraint programming.

2.2.4 EXISTING CONSTRAINTS IN XCSP
There exist many constraints in XCSP, and we will focus here in the ones that are used by
Ludii while creating XCSP instances.

INTENSION

The intensions constraints denotes a vast array of constraints that can be defined as Boolean
expression, usually called Predicates. Predicates are represented under functional forms in
XCSP3. The constraint x+y=z is written as eq(add(x,y), z). Many different operators can be
used in an intension constraint, like arithmetic operators (addition, opposite, multiplication,
remainder, minimum, ...), logic operator (Not, and, or, xor, ...) and relational operators (Less
than, greater or equal, different from, ...). Intension constraints often represents the bread
and butter of constraint programming and used to represent the most basic constraints. A
simple intension constraint on the sum of two variables would be written like this:

<intension>
<function> eq(add(x1,x2),x3) </function>
</intension>

Of course intension constraint can be arbitrary complex and express far more compli-
cated constraints.

EXTENSION

Extension constraints, also called table constraint, define explicitly the list of tuples allowed
(Positive table constraints) or forbidden (Negative tables constraints) for a tuple variables.
Conceptually, this is equivalent to enumerating the allowed/forbidden values for the tuples.
For example the following code imposes that the tuple <y1, y2, y3> takes a value among
the "supports".

<extension id="c2">

<list> y1 y2 y3 </list>

<supports> (0,1,0)(1,0,0)(1,1,0)(1,1,1) </supports>
</extension>

COUNTING

Counting constraints are based on summations or counting the number of times variables
satisfy a certain conditions.

The summation constraint is used to verify that the sum of the values of variables meet a
certain condition, such as being equal to or less than a specified value (That can be explicitly
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stated, a variable itself or even a list of values, meaning that the sum of the variables must
be equal to one element of this list). Moreover, a multiplicative coefficient can be applied
to the different terms of the sum. This type of constraint would be written like this:

<sum>

<list> y1 y2 y3 y4 </list>

<coeffs> 4 2 3 1 </coeffs>

<condition> (in,2..5) </condition>
</sum>
The count constraint ensures that the number of variables in a list that takes a specific
values on a list respects a numerical condition. For example it can be utilized to imposes
that the number 5 doesn’t appears more than 9 times in a list of variables. We will see that

this constraint is really useful while modeling logic puzzles.

ALLDIFFERENT

All different constraint are ubiquitous in logic puzzle and constraint programming in
general. More then half the games implemented on Ludii use it one way or another. It
applies on a list of variables and imposes that all take a different value. We can also add
an exception, for example to allow multiple zeros in the list, which is useful for several
puzzles. An example of this constraint could be:

<allDifferent>
x1 X2 x3 x4 x5
<except> 0 </except>
</allDifferent>
An other interesting variant is AllDifferent-list, which imposes that multiple list of variables

vary by at least one element.

REGULAR

The constraint regular ensures that the sequence of values assigned to the variable form
a word that can be recognized by a finite automaton[62]. We can examine one regular
constraint in XCSP:

<regular>
<list> x1 x2 x3 x4 x5 x6 x7 </list>
<transitions>
(a,0,a)(a,1,b)(b,1,c)(c,0,d)(d,0,d)(d,1,e)(e,0,e)
</transitions>

<start> a </start>
<final> e </final>
</regular>

And the corresponding finite automaton:

0 0 0

Figure 2.9: The automaton
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We can see that the final automaton possess 5 states, ranging from a to e. The starting
state is a and the final state is e. The key concept to understand this constraint is that
variables are transitions in the finite automaton. The constraint is satisfied if the current
state of the automaton after all transition is a final state. In the particular case of this
automaton with the variables [x1 .. x7], the sequence (0, 0, 0, 1, 1, 0, 0) doesn’t satisfy the
constraint because if we follow those transitions the final state is d. Thus we know the
variables [x1 .. x7] can’t have the values (0, 0, 0, 1, 1, 0, 0). One valid attribution of the
variables would be (0, 0, 0, 1, 1, 0, 0). The interest of this constraint for our use case is not
immediately obvious, it’s use will be discussed in more details in the implementation of
games like the Nonogram.

2.2.5 PREVIOUS WORKS

The present work relies heavily on an earlier paper titled "Ludii and XCSP: Playing and
Solving Logic Puzzles" [42] written in 2019 by a team from Maastricht university. This
paper details how it used the Ludii framework to produce an XCSP instance and solve
it using a specific constraint programming solver called Abscon [63]. This solution was
tested on six games as a prove of concept (Futoshiki, Latin Square, Magic Square, N Queens,
Nonogram, Sudoku).

Then using this benchmark, the authors evaluated the performances of this generic solver
on different sizes of board: As we can see, the translation from Ludii to XCSP is almost

Game Board Size  Ludii to XCSP in ##Variables  Domain Size #Constraints  Solved in
Ax4 0.301 16 4 12 2437

- 5x5 0.303 25 5 21 2.640
Futoshiki 6x6 0311 36 6 22 2.671
9x9 0.341 81 9 58 2.718

5x5 0.010 9 5 10 2.265

Latin Square 10x10 0.017 100 10 20 2.531
100100 0.121 10,000 100 200 142.377

3%3 0.012 9 9 8 2421

Magic Square 5x5 0.013 25 25 12 2.656
TXT 0.015 49 49 16 3.406

N Queens 4x4 0.011 16 2 61 3.125
ueens 8x8 0.011 64 2 255 4002
5x5 0.013 25 2 10 1328

N 10%10 0.013 100 2 20 1.654
onogram 20x20 0.014 400 2 40 1.843
32x32 0.015 1,024 2 64 2.656

9x9 0.010 81 9 27 2421

Sudoku 16x16 0.012 256 16 48 2734
25%25 0.014 625 25 75 3.127

Figure 2.10: Time necessary to generate and solve puzzle with Ludii, XCSP and Abscon

negligible, staying well under one second for very large instances. Even though the
resolution time increases significantly for very large instances, all problems of sizes that
are feasible for humans to solve are resolved within a few seconds. The authors do not offer
a direct comparison, but we can reference the paper [58], which uses a specific algorithm
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called Deductive Search, a breadth-first, depth-limited, constraint-based approach.

We can observe that in the case of Sudoku, the only game common to both datasets, the
resolution speed in the cited paper is around 0.1 seconds, whereas in Ludii, the resolution
speed was closer to two seconds for a 9x9 Sudoku. This discrepancy can be explained by
the hand-crafted constraint problem designed in the second paper. It is also worth noting
that for one specific puzzle, which was not suited for the Deductive Search proposed in the
paper, the solver reached a resolution time of over 10 seconds.

However, the difference in resolution time is not alarming for a general game-playing
agent, since it does not scale much with the size of the problem, allowing the solver to be
used efficiently for almost all practical purposes. For instance, a Futoshiki puzzle with 81
variables takes only slightly longer to solve than one with 16 variables (2.718 seconds and
2.437 seconds, respectively).

Towards the end of the paper, the team proposes extending Ludii’s library of logic
puzzles to the full range of Nikoli games. This was partially realized in [44], but the solution
implemented at the time of the paper was not functioning in the current version of Ludii.
The authors also suggest that it would be interesting to explore deductive search algorithms,
such as the one presented in [58], to further improve performance. Moreover, they develop
the idea that it would be useful for Ludii users to request hints. The combination of
these two points is particularly interesting because the deductive search algorithm aims to
emulate human processing power and the methods by which humans solve problems.
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3.1 CHOICE OF THE SOLVERS

We had to select a subset of solvers in order to compare their efficiency in our puzzles. To
select those solvers we used a few main criterion.

Firstly, we can study the performance of each solver by examining the result of the XCSP
competitions [61]'. XCSP competitions are organized each year since 2017 to evaluate the
performances of Constraint Programming solvers. They evaluate the efficiency of solvers
on six different categories, but two are of particular importance to us, the CSP competition
and the miniCSP competition, who evaluates performances of solver on problems who
only used a small subset of constraint.

Secondly, we want the solver to be able to process XCSP problems, thankfully all solvers
participating in the XCSP competition have this ability.

Thirdly, we want the solver to integrate correctly with the Ludii player, in order to keep its
utilization simple for users and limit the size of the executable.

3.1.1 ACE
ACE [64] is an open-source constraint solver developed by Christophe
Lecoutre from the University of Artois in Java. It has constantly pro- §h\»\ /Q%yi

duced really good results in XCSP competitions, even though it is -402‘%@
officially classed as "off-competition" since at least 2020 as C. Lecoutre "4’3‘/
is the person that select instances for the competition. // ACE

Furthermore ACE provides a .jar file to solve XCSP instance, which
greatly facilitates the integration of the solver in Ludii.

3.1.2 CHoOCO

Choco [65] is a Java library for constraint programming which was
created in the early 2000s. It performed decently well in the recent
editions of the XCSP competition. It aims to provide a complete and

https://www.xcsp.org/competitions/
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stable solver for commercial and academic usages. It incorporates a
large array of different search strategies and constraints (up to 100).
More importantly, it offers the possibility to easily define new search
strategies. This could be interesting for further researches in the
efficiency of different explorations algorithms in the case of puzzle
problems.

3.1.3 ABsConN

The AbsCon solver [63] is the predecessor of ACE in constraint programming. As it was
used in the foundational paper underpinning this master’s thesis [42], we retained its
implementation to provide a baseline for comparison with more recent solvers like Choco
and ACE.

3.1.4 Picar

Picat is a logic-based multi-paradigm programming language developed for general pur-
pose applications [66]. It was the best performing solver on the last edition of the XCSP
competition [61]. It would be interesting to add it to the Ludii framework to compare it to
others solvers on our specific instances. However since Picat is its own language it does
not offer the possibility to create a java executable for solving XCSP instances, by concern
of ease of use for the Ludii users we chose not to include it in the current version of the
framework.

3.1.5 Max1CP

The last solver that was considered during this master’s thesis was the MaxiCP solver [67],
a lightweigth solver used for research in the field of constraint programming. This solver is
based on the MiniCP solver [68] which is an educational solver partially developed by the
UCLouvain. As the MaxiCP implementation contains the solutions to the various exercises
of the classes related to MiniCP, a public version of this solver is not currently available.
For this reason we chose to not add it to the Ludii framework for the time being.

3.2 STRUCTURAL CHANGES TO THE FRAMEWORK

The implementation of the artificial intelligences capable of solving the puzzle problems
necessitated changes to the structure of the Ludii framework. We created two new packages
called csp.Solvers and csp.utils.

csp.Solvers contains one class for each constraint programming Al utilizable in the frame-
work (In this case there is one Al for each solver presented earlier) and a class called
Translator, which implements the problemAPI class from the XCSP modeler. The prob-
lemAPI is the class used by the XCSP modeler to construct a new problem. By implementing
this class we can use the provided methods to produce our own problems.

The csp.utils package contains the java executable of all the solvers and the shell scripts to
execute them on the XCSP instance, as well as the temporary XCSP file generated by the
Al

Moreover in the class BaseBooleanFunction, which is the abstract class used to implement
all constraint used in puzzle games, we added a new method addConstraint, which has the
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following signature:

public void addConstraint(ProblemAPI translator, Context context, Vvar[] x);

This method takes the model, the puzzle context, and the variables affected by the constraint
as parameters, and then adds the constraint to the XCSP model.

3.3 IA CLASS AND TRANSLATOR

In this section we will study in more details the implementation of the different IA classes
and the translator class.

3.3.1 1A cLASS

The abstract IA class available in the framework allows us to implement Al agents capable
of playing games. Two methods defined in this class are of particular importance to us,
initAl and selectAction.

initAl is called only once when the Al is created and effectuate preliminary computations.
In the case of constraint programming the whole solution has to be computed in one step
(we need to be sure that the sequence of moves that will be played will not finish in a
dead-end). In this method we build the XCSP problem using the Translator class. We save
that problem in an XML file and use a command line call to the correct java executable.
The solver return an answer in the Json format, that we can in turn translate to an array
where each element corresponds to a variable of the puzzle.

selectAction is called every time the agent wants to play a new move. It creates a list of
non-attributed variables (i.e each cell or vertice where no move has already been played),
select randomly one of them, create a new move which attributes the correct value to
this variable, then return this move which is effectively played on the game. The random
selection is a design choice that allow to display the solution in an aesthetically pleasing
way, we could also display the solution in the natural reading order, or in the order in
which the variables were attributed.

3.3.2 TRANSLATOR

The translator class is used for the translation of the ludemic representation of the game to
an XCSP problem. It creates one variable in the XCSP problem for each constrained site in
the puzzle, then restrict the domain of this variable to the range specific to the game. Then
it applies unary constraints to all elements present in the starting rules, for example all
numbers already present at the start of the problem in a Sudoku.

Then, the translator get all constraints from the game description and add all of them to
a queue. It iterates over all elements of the queue and for each one of them it adds it to
the XCSP problem. The use of a queue allows us to add more constraints to it if necessary.
One case where it is necessary is when applying the constraint and, a constraint that take
two other constraints and impose that the two of them are satisfied. To add this and to
the XCSP problem, we simply add its two arguments to the queue, where there are in turn
added to the XCSP instance.
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3.4 IMPLEMENTATION OF THE DIFFERENT CONSTRAINT

In this section we explain how the different constraints were implemented in Ludii. For
each constraint we will focus on the most distinctive part of the implementation.

3.4.1 ALLDIFFERENT
Their is a simple relation between the AllDifferent ludeme and its translation in XCSP. We
only have to state that that all the variables in a specific region have different values like this:

<allDifferent> x[0] x[9] x[18] x[27] x[36] x[45] x[54] x[63] x[72] </allDifferent>

However, the implementation of this constraint is non trivial due to the number of ways
regions can be given in Ludii.

« The region can be defined as a list of sites, which can be directly translated to XCSP
variables.

« The region can be defined as a regionTypeStatic, static regions are regions calculated
at the instantiation of the game, such as columns or line, in order to avoid redundant
computation during the execution of the game.

« The region can be defined by a regionFunction, which is a class that is used to define
region. This class contains a method eval(), that given the correct context returns
a Region, which contains a site() method which return the sites in the region as an
array of integers.

 The constraint can be applied to all region with a specific name, in this case we
iterate over all regions and compare their name to the constraint and select the
corrects ones. Different regions can have the same name, this is useful when we
want different constraints to apply to different sets of regions. For example in some
game we want all "walls" to behave in a specific way and all "lines" to behave in an
other way.

« Sometimes the region to which the constraint must be applied is not stated in the
constraint, in this case we should apply the constraint to all regions on the board,
including static regions defined earlier.

Once we have managed to obtain the indices of the constrained variables, the construction
of the constraint in XCSP is straightforward, we simply need to convert the indices of
cells to the XCSP variables and create a AllDifferent constraint in the model. Sometimes a
specific value should not be taken into account in this constraint, for example we sometimes
want every value in a region to be different or equal to zero. Thankfully, both Ludii and
XCSP allow us to introduce one more argument in the constraint to state this exception.

3.4.2 IsSum

The constraint IsSum imposes that the sum of elements in a region is equal to a specific
value. The way to gather all variables utilized is fairly similar to the constraint AllDifferent.
The value of the sum can either be defined as an integer or as an hint. An hint is a specific
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way to define a region, with a collection of sites and a list of value, for example in Killer
Sudoku?, hints are defined in this way:

(hint {0 9 18 27} 27)

Meaning that we create a region with the cells 0,9,18,27 and an "hint value" of 27. In the
description of the rules of the game the sum constraint is then expressed like this:

(is Sum HintRegions (hint))

Which imposes that for each region in HintRegions (i.e for every hint), the sum of the
elements must be equal to the hint specified for this region.

3.4.3 ATMosT/ATLEAST

AtLeast and AtMost have really similar implementation to the isSum constraint. For the
sake of brevity, we might be tempted to define one single ludeme to manage all classical
constraint in a sum (equal, less or equal, strictly less, more or equal, strictly more), by
adding one more parameter to the isSum ludeme. Besides, it would be more similar to the
way these constraints are expressed in XCSP.

However that would be detrimental to one core aspect of Ludii developed in section 2.1.4,
which is that Ludii aims to keep the ludemic representation simple to understand even for
people without a formal programming background.

3.4.4 IsCounT

The IsCount ludeme imposes that the number of repetition of an element in a region is
equal to a specified value. The count constraint in XCSP is a direct implementation of this
rule.

3.4.5 FORALL

The ForAll ludeme is used when one constraint has to be applied either to all instance of a
site type (cells, vertices or edges) or to all hints. We simply need to get all the instances of
the site type or all the region containing hints from the game context, then iterate over
them and add the constraint contained in ForAll with the context corresponding to the
current site.

3.4.6 ALLSITES

The ludeme AllSites apply a specific constraint to all the sites in a region defined by a
RegionFunction. To add this constraint to the model, we evaluate the RegionFunction to
obtain all the sites in this region, then we iterate over all these sites. For each one of these
site, we add to the model the constraint specified in AllSites adapted to this site.

3.4.7 IsUNIQUE
This ludeme states that for a set of regions of the same size each one of them has to differ
by at least one value (i.e for each pair of region, there is at least one site such that the value

2A variant of Sudoku which add a constraint in the sums of specific regions




PR S

28 3 IMPLEMENTATION

for this site is different in the two regions®). For now it is only used in Takuzu, a puzzle
where we have to fill cells of a square grid while respecting some condition. Notably, one
of these conditions is that all columns and all lines must be different. This is implemented
in a quite straightforward way by using the XCSP constraint AllDifferentList which states
that all lists given as parameters must differ by at least one element.

17001010110
1001010011
0110101100
0010110101
0101010011
1011001100
0110101001
17001100110
0110011010
1100101001

Figure 3.1: A complete grid of Takuzu

3.4.8 ISTILESCOMPLETE

This constraint imposes that given some regions (composed of cells) each one is either full
(each cell is gray) or completely empty. The way we chose to implement this constraint
was by using a variant of the sum constraint in each region. We state that the sum of the
values of the variables in the region must be either equal to zero or to the size of the region.
Practically, this is written in XCSP as:

<sum>

<list> x[3] x[7] </list>

<condition> (in, {0,2}) </condition>
</sum>
Interestingly, as this constraint is used in only one game* and can be summarize easily as a
compound of other constraints (The sum on the region is either the size of the region or
zero), we could in future works try to implement IsTilesComplete as a ludemplex® in order
to restrict the number of existing ludemes used in the construction of logic puzzles.

3.4.9 AND

The and ludeme employs the queue structure utilized to store the constraints to add its
two arguments of the and to the queue. It could be interesting to extends this concept to
the implementation of ForAll and AllSites in order to simplify the code and allow a greater
generality of the code.

3.4.10 IsMATCH
As a reminder the IsMatch constraint, used mainly in the variants of the Nonogram (which
rules can be found in section 2.1.6), imposes a constraint on the pattern of grayed cells in a

30f course, the sites of these regions must be ordered in a specific way for this constraint to make sense, in the
case of Takuzu it applies to column and line so the order is the usual reading direction, however we can easily
imagine other geometries where this would not be as trivial.

4Tilepaint

SLudemPlexes are compound structures of ludemes that aims to facilitate the comprehension of the representation
and increase reusability of the code.



3.4 IMPLEMENTATION OF THE DIFFERENT CONSTRAINT 29

specific line. The numbers on the left of that line (or the top of that column) indicate the
consecutive groups of shaded squares, separated by at least one empty square.

For example, the hint below imposes that the line contains any number of whites cells,
followed by four consecutive black cells, at least one white cells, two consecutive black
cells, at least one white cells, two consecutive black cells and any number of white cells.

AZZ T T

Figure 3.2: A solved line from a Nonogram

The astute reader has already noticed that given the previous definition of the prob-

lem, the translation to a regular expression is straightforward. Regular expressions are
sequences of characters that specify a match pattern [69]. A match pattern is a tool to
concisely and formally check that a given sequence of token respect its rules.
The aforementioned hint can therefore be formally expressed as the regular expression:
0%1{4}0 + 1{2}0 + 1{2}0* ®. One interesting property of regular expression is that they can be
transformed into non-deterministic finite automaton [70], and as we have shown in 2.2.4
we can construct constraints in XCSP that ensure a sequence of variables can be recognized
by an specific automaton. Thus, the previous constraint can be represented like this in this
XCSP instance:

<regular>
<list> x[0..4] </list>
<transitions>
(0,0,0)(0,1,1) (1,0,11)(1,1,2)
(2,0,11)(2,1,3) (3,0,11)(3,1,4)
(4,0,5)(4,1,11) (5,0,5)(5,1,6)
(6,0,11)(6,1,7) (7,0,8)(7,1,11)
(8,0,8)(8,1,9) (9,0,11)(9,1,10)
(10,0,10)(10,0,11)
</transitions>
<start> 0 </start>
<final> 10 </final>

</regular>

In this automaton:
« The states 0 is the initial state,

« States 1,2,3,4,6,7,9 and 10 correspond to states for which the last value on which we
iterated was a black block.

« States 5 and 8 are states in which we just iterated in one white block after a group of

black cells.

« The state 10 is a terminal state. The constraint is satisfied if the automaton finish on
this state.

%zero or more 0 followed by exactly four 1, followed by one or more 0, followed by exactly two 1, followed by one
or more 0, followed by exactly two 1, followed by zero or more 0
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« The state 11 is a degenerated state which is not terminal (i.e if the finite automaton
finish in the state 11, the constraint is not respected). We reach this state if we "cut" a
sequence of black cells that can not be separated, if we extends too much a sequence
of black cells, or if we add a fourth group of black cells.

Equivalently we can show the corresponding finite automaton:

Figure 3.3: The finite automaton corresponding to our IsMatch constraint

3.4.11 IsD1sTINCT

The IsDistinct ludeme is only used in RippleEffect. In this game we have to fill a grid with
numbers, one of the conditions to respect being that if a cell is filled with one number, no
other orthogonal cell orthogonally at a distance inferior or equal to the number in the first
cell can have the same value. In the following board none of the cells surrounded in red
can have the value 3:



EERTINN

3.4 IMPLEMENTATION OF THE DIFFERENT CONSTRAINT 31

Due to the nature of this constraint, we cannot know the variables that will be used in
it before calculating the solution. XCSP does not provide a standard way to implement this
type of dynamic constraint. We need to circumvent this limitation by combining simpler
available constraints.

One way to do so is to use the extension constraint as described in section 2.2.4.

« For each cell we compute regions of all possible size (One for each possible value of
the cell).

« For each one of these regions, we iterate over all cells and create a new extension
constraint stating that the pair of cell <current cell, center cell> can not have the
value <size of the region, size of the region>.

The constraint in one of these pair of cell would be expressed like this in the XCSP model:

<extension>
<list> x[10] x[12] </list>
<conflicts> (2,2) </conflicts>
</extension>

In this case, the extension states that the variables x[10] and x[12] can not both have the
value 2.

We can see that this method produce a huge number of constraints, in our example the
bottom left cell produce 34 constraints. However this does not seem to be a significant
problem for the resolution speed, ACE can solve the 17x17 problem in a little more than
2 seconds, despite the XCSP model producing 4229 constraints. Obviously there are far
more efficient ways to represent the ludeme in this specific game, we chose this particular
implementation in order to conserve the generality of this constraint with different board
geometries or region shapes.
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RESULTS

4.1 CORRECTNESS

We did not manage to solve all puzzles currently implemented in Ludii, you can see below
a table showing all the games and their current status:

Solved games Unsolved games
Akari Anti-knight Sudoku Asterisk Sudoku Big Tour Hashiwokakero
Buraitoraito Butterfly Sudoku Center Dot Sudoku Hitori Usowan!
Color Nonogram Fill A Pix Flower Sudoku Masyu SlitherLink
Futoshiki Girandola Hexagonal Nonogram
Hoshi Jigsaw Kakuro
Kazaguruma Killer Sudoku Latin Square
Magic hexagon Magic square N Queens
Nonogram Ripple effect Samurai Sudoku
Sohei Sudoku Squaro Sudoku
Sudoku DG Sudoku mine Sudoku X
Sujiken Takuzu TilePaint
Tridoku Windoku

4.1.1 UNSOLVED PROBLEMS

BiG Tour

Big tour is one of the simplest graph puzzle, it requires the player to draw one single
large loop that passes through each vertices of the graph. The constraints implied in this
problem are fairly simple to model, except the one stating that the edges must form one
single loop. This imposes that all edges must be connected, in the ludemic implementation
the ludemplex "OnlyOneWay" is used in the end conditions to ensure that the edges form a
single loop. This ludemplex is defined as follow:

IWhile testing this game we realized it was incorrectly implemented, making its resolution outright impossible to
achieve.
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(define "OnlyOneWay"
(and (is Solved) (= (count Groups Edge) 1))
)

As we can see, it states that for the puzzle to be considered solved the edges have to form a
single group?, which in the case of the edges in a graph is equivalent to stating that they
must be connected.

There exist algorithms to solve this type of problems [71][72], however constraint program-
ming is not often used for this class of problems and commercial solvers lack the global
constraint necessary to easily implement them. Thus we were not able to solve problems
involving connectivity constraint. This issue is further discussed in section 5.1.

(a) Correctly solved
Big Tour

(b) Solution without
the connectivity

SLITHERLINK AND MASYU

These two games have very similar rules to Big Tour, with the exception that the loop does
not have to cross every vertex.

In the case of SlitherLink some cells contain an hint that indicates the number of neighbor-
ing cells that must be used. In Masyu, some vertices contain hint to indicate if the loop
must turn or continue straight at that point.

All of those constraint are fairly straightforward to implement, but the connectivity con-
straint once again hinder the complete resolution of the games.

HASHIWOKAKERO
In Hashiwokakero, we have to link some islands with bridges while respecting the following
conditions:

« Bridges cannot cross each other.
« Bridges are drawn orthogonally.
« The maximum number of bridges between two island is two.

« The numbers on the islands indicate the number of bridges

connected to this island. Figure 4.1: A half

solved Kakuro

« All islands must be connected.

2The ludeme (count Groups) count the number of contiguous groups of the specified element
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Once again the constraint that prevent us to solve this prob-
lem is the one stating that all islands must be connected. It no-
tably uses the same ludeme "OnlyOneWay" than the previous puz-
zles.

HiToRr1
In Hitori, the player receives a grid with numbers on it. To solve
@' 243 @ the puzzle he has to place black pieces on some cells in order to
1@ @ ¢4 ¢ keep all different numbers on each line and column. No two black
: ;? ; : ’ cells can be placed side by side and all the cells without pieces
2341 6 5 must be contiguous.
0:0::0 The difficulty of solving this game using constraint programming
. .. resides in the connectivity constraint on white cells. It is ensured
Figure 4.2: A solved Hitori

by the ludeme (is Connex 0) that states all cells containing a 0 (i.e
all empty cell) must be connected. This is the only puzzle in which
this ludeme is used but while trying to produce an XCSP equivalent we encounter the same
difficulties than the "OnlyOneWay" ludeme, which is logical since those two constraints
are conceptually equivalent.

UsowaN

In this game, the player has to color cells such that each cell with a number indicates the
number of neighboring colored cells (cells with numbers cannot be connected). Colored
cells cannot be connected and all white cells must be orthogonally connected. However, in
each rectangle bordered by bold lines, there is exactly one hint which is a lie, and that we
must not respect.

Figure 4.3: An empty grid of Usowan

We were not able to solve this game, partly because it was inadequately implemented
in Ludii. The designer of the game made a distinction between "true" and "fake" hints
while designing the game. Because good puzzles games should have only one solution this
does not hinder the ability of an human player to play the game. Similarly, tests executes
correctly. However this design choice poses some problems:

« This solution can only be used when the designer know beforehand the solution, as
it needs to manually distinguish between good and bad hints.
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« It cannot not be used if the puzzle has more than one valid solution, since one specific
solution is expected by the framework, it would invalidate a good answer. A correctly
design puzzle should have only one solution, but we can not expect that it will always
be the case.

« Artificial intelligences cannot be applied fairly to these problems. As they have access
to the underlying representation of the problems, separating the true and false hints
becomes trivially simple and remove any significant meaning of "Solving" the puzzle.

This emphasize the need to design problems in a "neutral" way. The verification of the
validity of the problems should never be depends of a solution previously known by the
designer of the puzzle. This may seems obvious from the point of view of someone trying
to develop a solver agent. However as seen previously it may not be directly evident for
someone creating a new game. Even more so if he has no computer sciences background.

4.1.2 GENERALIZATION TO NEW PROBLEMS

One of the main objective of our agent was to offer a generic solver capable of generalizing
resolution methods to new problems. We were able to achieve this objective, at least
partially. In order to prove this, we tried implementing new games in Ludii without
further modification of the agent, to test the generalization capabilities of our solver. One
such game is Thermometer Sudoku, a variation of the Sudoku which add a constraint on
"thermometers"” stating that the numbers should be in increasing order starting from the
bulb of the thermometer. One example of this puzzle is present in image 4.4.

Figure 4.4: A thermometer Sudoku

We can model this problem by combining the classical rules of the Sudoku with the <
ludeme used in Futoshiki®. Upon calling our Al on this game, it produces the solution in
image 4.5. The graphical elements for this particular games are not present in Ludii, which
explain the peculiar look of the solved puzzle, but with further inspection one can convince
himself that the solution indeed respects the constraints stated in the initial problem.

Generally, we should be able to solve all puzzles which rules are already used in solved
games. We should also be able to solve all different geometries and sizes of existing games,
this is particularly important for the Sudoku, who possess a great number of variants.

3This ludeme ensure that a variable has a lower value than the other
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Figure 4.5: The solved Thermometer Sudoku

However after examining the games in Nikoli we can see that many of them are not
implemented in Ludii and therefore are not solvable using our agent. Obviously, most of
the games representable using the existing ludemes were already added by [44]. Our solver
thus lack generality in the sens that there exist many puzzles that it can’t solve.

It stands to reason that puzzles enthusiastic will seek original games that varies from
known constraints and usual patterns, Nikoli’s website claim that each puzzle has "a totally
different “flavor” and freshness" [3]. This tendency to seek new original rules in puzzle
reduces the generalization potential of our agent. Many games in Nikoli feature an unique
constraint that is not shared by any other. A good example of such a constraint is found in
ShakaShaka, where the player has to add black triangles to a grid in a way that creates
rectangles (which can be "tilted"). No other puzzle features a rule similar to this one, it’s
probable that we will have to create a custom ludeme specifically for it.

Progressing Solution

Figure 4.6: A game of ShakaShaka

4.2 SPEED

In this section we will observe the time taken by the solver to translate a game in the XCSP
format and the time taken by the solver to produce an answer. We will compare different
solvers to determine if their is a significant difference of performance between them . If it
is the case, we will try to determine which criterion determine the best solver for a specific
puzzle.
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4.2.1 GENERATION OF THE XCSP PROBLEM

The first step in the resolution of the puzzle is to translate the Ludii representation to an
XCSP instance. We measure the time taken by the XCSP modeler to model the puzzle and
write its representation in the Translator.xml file.

We chose three different problems on which to take measurements. First, the N-Queens,
a common benchmark when comparing resolution speeds for constraint programming
solvers [73], and which relative simplicity* allows Ludii to run large instances efficiently.
Second, the Ripple effect puzzle, characterized by a huge number of constraints in its XCSP
representation. Finally, the Nonogram, which incorporates non-standard constraint that
may require more time to add to the instance.

In the following graph we show the time necessary to produce the XCSP instance depending
on the size of a N-Queens problems (The size of one side of the board) and the number of
variables:

Time necessary to generate the XCSP instance

0.4

0.2 1

Time (s)

0.0 -

20 40 60 80 100
Size of the instance (-)

0.4

0.24

Time (s)
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T T T T T
2000 4000 6000 8000 10000
Number of variables (-)

o

We can see here that even for problem of very large size, with up to 10 000 variables
and 600 constraints, the generation of the XCSP instance takes less than half a second. We
did not conduct experiments with larger board sizes since Ludii is unable to support them.

Next, we study the time necessary for the agent to produce an XCSP representation
of the Nonogram puzzle. This representation uses regular constraints which are imple-
mented as described in section 3.4.10, and that we could expect to be more computationally
expensive to construct. However, as we can see in the table 4.1, the time taken to create
the XCSP model remains relatively short, even for large instances. We will see later how
this delay in the resolution is negligible when compared to the resolution time and the

“In the N-Queens problem, the player is given a board of size NxN and must place N chess queens such that no
two queens can attack each other.
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Size of the puzzle | 2 5 10 15 20
Time (ms) 3 6 12 12 27

Table 4.1: Creation of the XCSP instance for the Nonogram puzzle

limitations induced by the Ludii framework itself.

Finally, we examine the Ripple Effect puzzle and the time required to produce an in-
stance of the XCSP problem. This problem is interesting in that it produces an exceptional
number of constraints. For example, in the largest instance available on Ludii, which is
a square of size 17, the model enforces 41 154 constraints. In the table 4.2 we can see for
each available size of Ripple Effect the total number of variables created, the number of
constraints, the time taken to create the XCSP instance and the number of constraints
created by milliseconds of runtime. This latter metric is obtained by dividing the total
number of constraints by the time necessary to produce them.

Size of the instance (N*N) | Variables | Constraints | Time (ms) | Constraints by millisecond
6 36 1368 7.4 184.8
8 64 2611 11.6 225.1
10 100 6288 36 174.7
17 289 41154 174 236.5

Table 4.2: Creation of the XCSP instance for the Ripple Effect puzzle

Interestingly, we see that the number of constraints produced per second is fairly constant
whatever the size of the puzzle. Although we lack the quantity of instances to analyze
in details the evolution of the number of constraints, it is evident that it does not evolve
in a linear fashion. Thus, by increasing the size of the puzzle we will reach unacceptable
computation time on large instances. The resolution of those instances would require a
more efficient way to implement the rules of this puzzle.

That said, the computation times obtained for the available instances are reasonable given
that the 17x17 case is the largest Ripple Effect that we could find. This game being chosen
specifically because of the huge number of constraints generated®, this demonstrates that
the current implementation can handle moderately large puzzles effectively.

4.2.2 RESOLUTION SPEED

In the following table, we present the computation time required to solve instances of
various problems using the Choco and ACE solvers. The computational overhead of Ludii
can sometimes hinder the ability to produce solutions within a reasonable time frame as
described in [44], independently of the solvers’ performance. Therefore, for each solver,
we compare the resolution speed within the Ludii framework against directly invoking the
solver on the XCSP instance using external commands, without using Ludii’s architecture.

5By way of comparaison, the 16x16 sudoku only produce 48 constraints, the 100x100 NQueens 602 constraints,
the 16x16 TilePaint 120
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When a game could not be solved in a reasonable time frame (We stopped the computation

"o

after 5 minutes when the solver could not find a solution), we denoted it with an "-".

AbsCon ACE Choco Best

Ludii NoLudii | Ludii | NoLudii | Ludii | NoLudii | solver
NQueens 1010 0.591 0.536 0.92 0.781 9.473 9.384 AbsCon
NQueens 15*15 14.731 14.642 - - - - AbsCon

NQueens 2020 - - - - - - -
Nonogram 5*5 0.407 0.375 0.693 0.578 0.438 0.389 AbsCon
Nonogram 10*10 0.449 0.424 0.718 0.645 0.484 0.407 AbsCon
Nonogram 1515 0.497 0.427 0.768 0.625 0.498 0.440 AbsCon
Nonogram 20*20° - 0.44 - 0.696 - 0.460 AbsCon
Latin Square 1010 0.425 0.374 0.694 0.546 0.38 0.344 Choco
Latin Square 20*20 0.561 0.490 0.78 0.671 0.448 0.406 Choco
Latin Square 30*30 0.806 0.696 0.918 0.828 0.589 0.536 Choco
Latin Square 50*50 3.22 3.249 2.236 2.197 1.412 1.433 Choco

Latin Square 100*100 - 85.215 - 44.902 - - ACE

Ripple Effect 10*10 0.845 0.760 1.08 0.968 0.831 0.764 Choco
Ripple Effect 17*17 2.06 2.031 2.284 1.984 2.043 1.977 Choco
Akari 7°7 0.424 0.375 0.701 0.593 0.418 0.357 Choco
Akari 1414 0.525 0.471 0.804 0.671 0.356 0.409 Choco
Akari 25*25 0.579 0.540 0.895 0.781 0.516 0.453 Choco
Samurai Sudoku 0.505 0.469 0.795 0.687 0.476 0.424 Choco
Buraitoraito 0.423 0.376 0.707 0.578 0.422 0.376 Choco
TilePaint 16*16 0.458 0.409 0.787 0.656 0.407 0.361 Choco

Table 4.3: Comparison of the solvers on a subset of the puzzles

COMPARISON OF THE SOLVERS

When comparing the time taken by the different solvers on the puzzle we see that generally
Choco performs slightly better than AbsCon, with ACE performing a bit worse. Nonethe-
less the results on two particular puzzles stand out: Choco performs exceptionally badly on
the NQueens problems, and ACE performs exceptionally great on the Latin Square problem.
Of course it is expected that solvers will behave differently on different problems, however
it is compelling that the problem on which ACE performs the best is the one containing
the largest number of variables.

One important thing to consider when comparing the solvers is that the ludemic version of
the problems was not necessarily designed to be easily solved by constraint programming.
For example, the constraints on the NQueens problems of size N simply state that the
number of queens for all lines, columns and diagonals is at Most 1 and that the board
contains N queens. It is possible that a reformulation of the rules of the game could speed
up the resolution process, or change the best performing of solver.

The fact that the AbsCon solver performed better than its successor on almost all
instances is quite surprising. We used the solvers in a generic fashion without fine tuning
them for specific problems, it’s possible that further improvements on the matter would

The 20 by 20 Nonogram that was present in Ludii is not satisfiable, the time taken by the solver is the elapsed
time taken by the solver to prove that the problem is not satisfiable. This was probably not realized during its
implementation since Lit could not be tested by the Framework.
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show better performances for ACE. Besides, problems with more variables seem to be more
easily handled by the ACE solver, but we would need more large instances in Ludii to
demonstrate it formally.

All things considered, it seems that different solvers will be best for specific problems
and problems sizes. The chosen approach is thus to configure Ludii to provide for each
problem the solver that is best suited. This solver being empirically determined, it harms
the generalization possibility needed in Ludii. What’s more, we will need to do the tests
again each time we update one solver or add a new one. Additional research will be useful
in identifying a priori the conditions under which a solver performs effectively.

4.2.3 LIMITING FACTOR IN RESOLUTION

It’s important to identify the limiting factor in the resolution of problems in Ludii to focus
correctly our effort to improve it. We have identified three possibles reasons for which
game could not be solved in a reasonable time by Ludii:

+ Generation of the XCSP instance: As seen in section 4.2.1 the generation of the XCSP
instance stays fairly efficient, even for problems with large sizes and high number
of constraints. It could however be a future problem for games with exceptional
number of constraints when reaching large sizes, such as Ripple Effect.

« Solving process: We saw in table 4.3 that the resolution process take a long time on
the larger problems. This is not an issue on most human-sized puzzles, but prevents
us to solve big instances of games like N-queens or Magic Quare and could lead to
some problems in the futur.

+ Processing by Ludii: Some games are not currently run efficiently by Ludii, they are
not loaded correctly or are too slow to display the solution, even if it is correctly
computed. For example, the Nonogram of size 20 only allow for one move to be
played every 1208 seconds. This is discussed in details in [44], where the author
identify two possible causes for this inefficiency.

The first limitation is the number of pre-calcutions performed by Ludii while loading
the game, limiting the size of the board. These pre-computations reduce the time
necessary to calculate potential moves but increase the loading time of the game,
when the board is too large this pre-computation becomes too expensive and com-
pletely block the framework. This explain the inability to run tests on instances of N
Queens and Latin Square of sizes superior to 100.

The second limitation in the speed of the framework is the computation of some
constraints. This mainly affects the Nonogram, for which the current code compute
all the possible values for each line and each column, and for each move played
checks that the resulting array belongs to one of these possible values. This is com-
putationally expensive and slow down the execution of the game to the point it is
unplayable.
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FUTURE WORKS

5.1 IMPLEMENTATION OF THE LAST CONSTRAINTS

As discussed in the previous chapter of this thesis, we were not able to implement con-
straints on the connectivity of a solution. This prevents us from solving some puzzles in
Ludii, and will prevent us from solving many other puzzles that are not yet in Ludii. The
main problem with this constraint seems to be that we cannot apply a constraint on a
subset of vertices to enforce connectivity. Generally we can expect that we will struggle to
produce an XCSP representation of every games where the constraints can’t be expressed
on subset of variables.

There are possible solutions to this problem that are worth exploring:

+ The use of other programming paradigms in conjunction with constraint program-
ming. Once the problem is formulated as a graph problem, classical resolution
methods can be applied. Obviously, it would require significant changes to the
internal representation of the puzzles.

+ The creation of custom global variables. This would imply to design a specific con-
straint that enforce connectivity and modify the XCSP standard as well as the solver
to take into account this new constraint. This has already been done, for example the
constraint programming solver used in [58] implement a CONNECTED() constraint
which imposes edge connectivity.

5.2 EXTENSION TO MORE GAMES

In Pierre Accou’s master thesis [44] the author tried to implement the greatest number of
games from both Nikoli and Cross+A, however, many puzzles remain non-playable. We can
see in the graph 5.1 the proportion of games present in Ludii for both Nikoli and Cross+A.

In order to try and solve them using constraint programming, we should strive to add
more of those puzzles to Ludii. It is not easy to exhaustively describe all the puzzles that
have yet to be implemented and their difficulties. However we can provide some main
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Nikoli's games in Ludii Cross+A games in Ludii

214

BN Games in Ludii
I Games not implemented

Figure 5.1

categories of puzzle that share common characteristics not seen in puzzle already studied.

The first of those categories require the player to delimit regions of specific sizes and
shapes by coloring edges!. One example of this category is shown in figure 5.4. The way
to implement this problem in Ludii is not immediately obvious, conceptually the game
require the player to divide the board on different regions, but the ability to "toggle" vertices
suggests that they should be the variables in the constraint solver.

1. 3 1 I8 | 113 1 (3 |

Sample Progressing Progressing Solution

Figure 5.2: Resolution of a Double Choco puzzle

The second category is composed of puzzle like Yajilin, Herugolf or Suraromu. These
puzzles require the player to construct a path that "moves" in a certain way. For example
in the Suraromu problem visible in figure 5.3, we have to construct a loop that "passes"
through each door, the numbers on doors indicating that the loop must cross them in a
specific sequence (The door with the number 2 must be the second door crosses). While this
notion of "crossing” a door is fairly intuitive for human player, to the best of our knowledge
no XCSP constraint representing this type of limitation exist at the moment.

Including Double Choco, Jemini, Neibadomino, Yokibunkatsu among many others
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sample Progressing Solution

Figure 5.3: Resolution of a Suraromu puzzle

The final category of games that we were able to identify was the one containing
puzzles like Shakashaka, Shikaku or Tentai Show, where the player has to modify the board
in order to create specific properties for each region of the grid. In Shakashaka and Shikaku
the board must be modified to create regions of square or rectangular shapes. In Tentai
Show, he has to create regions that are symmetrical with respect to some pre-given point
of reference. These constraint cannot be expressed by local constraints in XCSP and will
probably require the creation of some custom global constraint.
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Figure 5.4: Resolution process of a Tentai show, notice how all pieces are symmetrical with respect to the whites
and black dots.

5.3 IMPROVEMENT OF LUDII SPEED

As shown in Chapter 4, a significant obstacle to the resolution of large instances of some
puzzles is the computational speed of the Ludii framework itself.

This issue is particularly evident with the Nonogram, which struggles to handle even
moderately sized puzzles compared to those in specialized collections [74]. The critical
path to providing an efficient Nonogram solver in Ludii lies in improving the framework
itself and enhancing its computational speed.

Part of the problem is linked to Ludii’s move-validation mechanism, which checks that
moves played are legal. Each time an agent try to apply a new move to the board, Ludii
verify that is doesn’t violate any constraint, and if it does, it prevents the user to play
this move. In the case of the Nonogram, Ludii calculates all possible values for each line
and column (Depending on the hint) to check if the current states of the variables is still
coherent with the hint. This is not really efficient as it requires the creations of a huge
number of candidates for each constraint, preventing the puzzle from working for larger
problem sizes.

One other way Ludii could be improved is by reducing the quantity of pre-computation
on boards of very large sizes, such as the ones used for the N-Queens or Magic Square
puzzles. The impact of this pre-computation is clearly shown in [44], where a simple 25*25
N-Queens puzzle takes more than 6 seconds to load in Ludii. A path to improve this is to
analyze the description of the game in order to compute only the information relevant to
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the game. When running an instance of the Magic Square, Ludii should not compute all the
possible knight moves in the board. One added benefit of this amelioration is that it would
equally improve all other games present in Ludii, even the ones that are not logic puzzles.

5.4 FURTHER IMPROVEMENTS FOR USERS

The current solver allows the user to solve a problem and input its solution in Ludii. This is
helpful to find or verify the solution to a puzzle. We could add many more useful features
for both players and game designers.

A human player using the Ludii interface could be blocked on a specific puzzle, an instead
of outright receiving the solution, he could want to receive an hint to continue progressing
in a more natural way. A straightforward way to assist the user is to indicate if there’s a
mistake in their current puzzle resolution. This can be done by running a solver on the
current state of the board to check if a valid solution exists. If the user requires more
assistance we can trivially compute the solution and reveal the value of one random site.
However, this naive solution, while easy to implement, is probably of little interest to a
knowledgeable player. Indeed, a good puzzle problem should be solvable using mainly
inductive reasoning and involve very little guessing?. A good hint, rather than blindly
pushing the player in a random direction should identify a subset of the problem that can
be reasonably solved by an human player.

On simple instances of puzzles we can identify the sites with the smallest domain, but this
approach will not work on more complex puzzle. Some papers have tried to produce solvers
capable of identifying known patterns for specific games [75] [76], but these methods are
limited to specific puzzle with handcrafted techniques. (As an order of magnitude, there
exists more than fifty different strategies used by human players for the sole Sudoku[77]).
The most promising approach to increase explainability in general game playing is be
described in [78], in this paper the authors use Minimal Unsatisfiable Subsets (MUSes) to
generate a sequence of small reasoning steps, each with an explanation understandable for
a human player.

A game designer using Ludii could want to design new instances of known puzzles
or to create entirely new puzzles. To create new instances for known puzzle it would
be interesting to explore the automatization of the creation process, as discussed earlier
designing interesting instances is far from easy, and would need to take into account
the solving methods available to the player, for example by using the MUSes described
above. Moreover the creation of hand-made new instances would be greatly facilitated by
a graphical interface, the current process of writing all hints by referencing the indexes
of the affected sites being quite cumbersome. Finally, the generation of new puzzle using
evolution and language models as described in [40] could yield promising results.

2This is probably why Nikoli doesn’t use procedurally generated puzzles, who may require the use of a lot of
"backtracking" methods, which human players don’t enjoy.
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CONCLUSION

The objective of this master’s thesis was to develop an agent capable of solving every logic
puzzle. To achieve this, we utilized the Ludii framework and its Ludemic description of
games to produce standardized XCSP representations of the problems. These represen-
tations enabled us to use constraint programming solvers, such as ACE and Choco, to
compute solutions, which were subsequently integrated back into the Ludii framework.

Our approach successfully solved a wide variety of puzzles already implemented in
Ludii. Furthermore, we demonstrated that our implementation was capable of solving new
games by adding them to Ludii and solving them without further modification of the code.
We also showed that the creation of the XCSP instance introduced minimal delay, enabling
the utilization of this approach for real-time use by human players. Similarly, even if the
resolution process does not reach the performances of custom designed implementations
and propagation strategies tailored for specific problems, it was fast enough for the resolu-
tion of typical human-sized puzzles.

Despite these achievements, significant challenges remain for Ludii to be able to solve
all logic puzzles. The Ludii framework lacks the efficiency to run very large instances due
to the amount of unnecessary pre-computing realized on the board. Some puzzles, such as
Nonogram, require heavy computation even for relatively small instances, which hinders
the playability of the game and the presentation of the solution to the user.

Moreover, many games are yet to be implemented in Ludii, more than 90% of the
puzzles present in the database used as references are not part of the framework. We
cannot guarantee that those puzzles would be solvable by the agent in its current state.
In fact, the presence of constraints not currently implemented in Ludii for some of these
games suggests that modifications to the agent would be required to solve them.

Finally and most importantly, some games already present in Ludii remain unsolved,
particularly puzzles which incorporate connectivity constraints. These constraints pose
unique challenges due to their complexity and the lack of XCSP support, highlighting the
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need for further research on this topic.

Ultimately, this work demonstrates that the creation of a generic solver for deduction
puzzles is indeed possible. By combining the Ludii framework with the XCSP formalism
and existing constraint programming solvers, we have laid a solid foundation for future
research on this topic.
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